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ABSTRACT
The impact of operator disruption and genetic drift on the
extinction of EA subpopulations on multimodal landscapes
is estimated by means of idealized two-peak landscape mod-
els. To establish upper and lower bounds for extinction
times the behavior of an EA that employs (µ+, λ) selection
and recombination mechanisms is studied, assuming disrup-
tive recombination. Markov chain and statistical simulation
studies reveal that panmictic selection mechanisms as used
in evolution strategies (ES) do not allow for maintaining sev-
eral populations of similar fitness at the same time. More-
over, when using comma selection, good individuals might
easily get lost if forming the minority of a population, an
effect seemingly amplified by recombination. Niching tech-
niques are suggested to facilitate coexistence of populations
on distant attractors; conducted studies confirm their apti-
tude.

Categories and Subject Descriptors: G.3: Probabilis-
tic algorithms

General Terms: Algorithms

Keywords: multimodal optimization, evolution strategies,
Markov simulation, niching, clustering, genetic drift

1. INTRODUCTION
State-of-the-art evolutionary algorithms (EA) usually rely

on recombination and mutation as variation operators. Cur-
rent results show that on some problems, recombination
provably speeds up global search essentially [7]. On the
other hand, it is also known that it might disrupt good indi-
viduals [4]. In this study, we take a closer look at the effect
of recombination on EA behavior for simple multimodal fit-
ness landscapes.

Experimental experience often provides us with disap-
pointing results when tackling multimodal problems. Es-
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pecially (µ , λ)-EA, although potentially able to leave local
optima, seem vulnerable to losing track of the global op-
timum, despite having entered its basin of attraction. We
will provide evidence that a single individual entering a new
attraction basin is lost under comma selection even if it is
the best currently detected one. A first naive explanation is
that it does not manage to pass on its search space position
to the next generation due to lack of appropriate mating
partners.

To enable judging the validity of this conjecture, we herein
present a simple model for the behavior of a (µ+, λ)-EA on
a two-attractor fitness landscape. The derived probabilistic
formulas permit Markov chain simulation for a number of
cases, including the genetic drift effect. On the border of
practical infeasibility, these can be extended by monte carlo
simulations. Using both techniques, we tackle questions for
the likelihood of the undesired events described above. Note
that our approach is related to, but still different from the
investigation of takeover times [6] which focuses on selection
schemes. Undoubtedly, selection favors good individuals if
available. Nevertheless, these have to be generated first –
this production aspect is the rationale behind our model.

One may argue that the two-attractor case is too specific
and thus our model lacks explanatory power for the general
case. However, as recombination in panmictic EA tends to
concentrate the whole population to a certain search space
area [2], it may be reasonable to expect that different at-
tractors are often discovered by a single individual due to
one large mutation.

The paper is structured as follows. First, Sect. 2 relates
our approach to previous work on genetic drift. Section 3
describes our model together with the basic EA. We then
derive the transition matrices used for Markov simulation in
Sect. 4. Results of analyses and simulations are presented
in Sect. 5, whereas the following Sect. 6 explains our new
approach to hold different local optima. Finally, Sect. 7
summarizes the paper.

2. GENETIC DRIFT RELATED WORK
The term genetic drift is known from population genetics.

It describes the effect of a loss of population diversity that
occurs due to the stochastic nature of selection in a finite
population even in case of neutral fitness [9].

Investigations of this effect on evolutionary algorithms
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were carried out by several authors. Asoh and Mühlenbein
examine convergence of a population to one genotype. They
only take reproduction by uniform crossover into account [1],
neglecting mutation and selection. This stands contrary to
our investigations, as we also look at selection. For a repre-
sentation with two alleles per gene they perform a Markov
chain analysis to calculate the mean convergence time. For
one gene, this time is linear in the number of individuals.
For multiple genes it grows logarithmic in their number.

Rogers and Prügel-Bennett investigate the effect of se-
lection schemes on the population fitness variance ([11]).
The selection is split into two operators. First, it randomly
chooses a parent to generate one offspring by producing an
exact copy. In a second step, the new parents are selected
out of the set of offspring and possibly the parents. At this
stage, the selection method prefers individuals with better
fitness values. The higher the selection pressure (the ratio
of generated offspring and the number of parents), the less
is the probability to select an offspring with worse fitness.
But even if the same number of offspring as the number of
parents is generated, the stochastic nature of the selection
operator provides for a loss in population fitness variance.
To analyze this effect, the authors use different selection
schemes for solving the ONEMAX problem. They come to
the conclusion that ‘definitive statements about the perfor-
mance of different selection schemes are difficult to make’.
Further related investigations were conducted by Shapiro
and Prügel-Bennett [13] and Prügel-Bennett [10].

3. A TWO-ATTRACTOR (µ+, λ)-EA MODEL
We deliberately restrict our model to a (µ +, λ)-type EA

where mating selection is regarded as random choice and
only environmental selection exerts pressure in direction of
better fitness values. The basic algorithm is modeled after
[3], later also taking the assignment of individuals to basins
of attraction into account. Note that we do not apply clus-
tering at this stage to allow for use of arbitrary test prob-
lems. This is deferred to Sect. 6. Instead, we first tackle
the second problem: Given that attractor identification is
possible, how do subpopulations evolve under different (re-
production and selection) operators?

At first we assign a color tag to each individual, either
black if located at the first attractor, or white if located at
the second, or gray for all others. Further on, we refer to
subpopulations as multisets of individuals sharing the same
color.

The color characteristic is described with the following
notation: A population

P = (•, . . . , •| {z }
n1

, •, . . . , •| {z }
n2

, ◦, . . . , ◦| {z }
n3

) (1)

is denoted with P = (n1•n2◦n3). Moreover, for a population
P let •(P ) denote the number of black individuals, •(P ) the
number of gray individuals and ◦(P ) the number of white
individuals.

We now detail the model EA according to the pseudocode
given in Alg. 1. Let I define the individual space. An indi-
vidual a ∈ I consists of its search space position, the associ-
ated fitness and a color tag ca ∈ {•, •, ◦}. Furthermore, let
Pt ∈ I

µ, Qt ∈ I
λ and Mt ∈ I

ν denote multisets of individ-
uals. Pt is termed parent population, while Qt denotes the
offspring population for t = 0, . . . , tmax.

Algorithm 1 Model EA

t← 0
Pt ← init() /* Initialise population Pt ∈ I

µ*/
while t < tmax do

Qt ← gen(Pt) /* Generate Qt ∈ I
λ by variation opera-

tors */

Mt ←

�
Qt for (µ, λ)-selection
Qt ∪ Pt for (µ + λ)-selection

Pt+1 ← sel(Mt) /* Select µ best individuals from Mt

for Pt+1 */
t← t + 1

end while

The EA starts with initializing generation counter t and
parent population Pt, the latter is placed in the individual
space I. Then, as long as the generation counter does not ex-
ceed a defined maximum tmax, the following loop is repeated:
Generate a multiset of λ offspring by means of variation op-
erators (recombination and mutation), then select the best
µ individuals out of Mt. Here, Mt = Qt in case of (µ, λ)
selection and Mt = Qt ∪ Pt for (µ + λ) selection. Finally,
increase the generation counter and jump to the beginning
of the loop.

We use two versions of the generate procedure gen(Pt)
with different mating selection schemes. Standard recom-

bination randomly chooses two individuals from the whole
population, whereas niching recombination only mates indi-
viduals from the same attractor (black or white). Further-
more, the latter distributes the number of produced offspring
evenly between subpopulations. Concerning color/attractor
inheritance, our model utilizes the following rules:

• Mating of any two individuals on the same attractor
will result in offspring preserving the parents color.

• Offspring generated by recombination between indi-
viduals on different attractors is not placed on any
attractor and thus gets a gray color tag. Its fitness is
worse than that on one of the attractors.

• Recombination with a gray individual involved pro-
duces a gray individual.

Note that for our model, the mutation operators influence
is neglected insofar as we assume that mutation never leads
from one to another attractor.

Concerning selection, we make the convention that in case
of equal objective function values for Mt, sel(Mt) randomly
draws k out of the Mt individuals. Note that due to their
low fitness gray individuals only get accepted for the next
generation if •(Q) + ◦(Q) < µ for (µ, λ)-selection. That is,
the number of available black or white individuals is insuffi-
cient for filling up the next parent population. For (µ + λ)-
selection, this event is ruled out if •(P0) + ◦(P0) = µ.

4. MARKOV CHAIN MODEL
We are now interested in probabilistic transitions of pop-

ulations caused by the selection mechanisms in order to per-
form Markov chain simulations [8]. In particular, we want
to compute extinction probabilities and times for start con-
ditions with a number k of black individuals representing a
subpopulation on a newly detected attractor. All selection
mechanisms investigated here have the Markov property, i. e.
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Figure 1: Visualization of transition matrices for an ES with µ = 20, λ = 140 ((µ+λ) and (µ, λ) variants appear
to be structurally identical) without (left) and with recombination (right) on neutral fitness. Recombination
obviously reduces survival probabilities for the smaller subpopulation.

the probabilistic distribution of individuals in Pt can be de-
rived from the distribution of individuals in Pt−1.

Let k denote the number of black individuals in the ini-
tial population. Then we are interested in the probability
pj,n(k, i) for j black individuals and n gray individuals given
k black individuals and i gray individuals in the initial pop-
ulation. Let

Pt = (k•i◦µ−k−i), Qt = (l•r◦λ−l−r), Pt+1 = (j•n◦µ−j−n)
(2)

describe a possible generational transition. We calculate:

pj,n(k, i) =
λX

l=0

λX
r=0

pgen

l,r (k, i)psel
j,n(k, i, l, r) (3)

with

pgen

l,r (k, i) := Pr(Qt = (l•r◦λ−r− l)|Pt = (k•i◦µ−k−i)) ,

and

psel
j,n(k, i, l, r) :=

(4)

Pr(Pt+1 = (j • n ◦ µ− j − n)|

Qt = (l • r ◦ λ− r − l) ∧ Pt = (k • i ◦ µ− k − i)) .

Generate Transition Matrix
Regardless of selection operator and fitness distribution the
probability for pgen

l,r (k, i) is always the same and can be de-
scribed by a multinomial distribution:

pgen

l,r (k, i) = Al ·Br · Cλ−l−r ·D (5)

with

A :=

�
k2

µ2

�
B :=

�
µ2 − (µ− k − i)2 − k2

µ2

�
C :=

�
(µ− k − i)2

µ2

�

D :=
λ!

l!r!(λ− l − r)!
.

Fractions A, B, and C in this term are the probabilities of
generating a black, gray or white individual from Pt within a
single recombination. Assuming, the individuals are sequen-
tially generated, fraction D describes the number of possible
sequences of length λ that contain l black and r gray individ-
uals (multinomial distribution) and Al ·Br ·Cλ−l−r denotes
the probability for each of these sequences to be generated.
It is assumed that the two parents are drawn randomly from
the population with uniform probability and that selecting
the same individual twice is allowed.

Selection Transition Matrix: Neutral Fitness
If we assume equal fitness on both attractors, we obtain the
transition probabilities:

psel
j,n(k, i, l, r) =

�
q

j

�
·
�

m−q−s

µ−j−n

��
m

µ

� ·I(n = max(0, µ−m+s)) (6)

Here, m = λ + µ, q := k + l, s := i + r in case of a (µ + λ)
selection and m := λ, q := l, s := r in case of a (µ, λ)
selection. In other words, the merged population writes
Mt = (q • s ◦m − q − s). I is the indicator function which
equals 1, if the condition is true, and 0 otherwise. Moreover,
we use the extended definition of binomial coefficients. The
idea behind equation 6 is that — following the Laplacian
approach — we relate the number of possibilities to select a
population with n gray individuals out of Mt (the denomi-
nator of 6) to the number of possibilities of choosing j indi-
viduals out of the black partition, while choosing µ− j − n
individuals out of the white partition (in the numerator of
6).

Selection Transition Matrix: Boolean Fitness
If we assume that individuals on the black attractor have
better fitness than the ones on the white attractor, the se-
lection step transition gets deterministic:

psel
j,n(k, i, l, r) = I(j = min(µ, q)∧n = max(0, µ−m+s)) (7)

Here, the numbers m, q, s are defined as in 6, i.e. Mt =
(q • s ◦m− q − s).
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Mating Restrictions Transition Matrix
If we apply mating restrictions in a way that only individuals
located on the same attractor (niche) can mate, the equa-
tions of the Markov model simplify, because gray individuals
need no longer be considered.

Let k = •(Pt), l = •(Qt), and j = •(Pt+1). Then we get
the general transition matrix:

pj(k) =

λX
l=0

pgen

l (k)psel
j (l, k). (8)

For the generation of new individuals we get the equation:

pgen

l =

�
k

µ

�l

·

�
µ− k

µ

�λ−l

·

 
λ

l

!
. (9)

In order to obtain the transition probability psel
j (l, k), we

have to distinguish two cases - equal fitness values and dis-
tinct fitness values on both attractors. In the first case we
get:

psel
j (l, k) =

�
q

j

�
·
�

m−q

µ−j

��
m

µ

� , (10)

with m = λ, q = l in case of comma selection and m =
λ+µ, q = k+l in case of plus selection. For boolean selection
the equation simplifies to: psel

j (l, k) = I(j = min(µ, q)). For
a detailed derivation of these equations we refer to [12].

Visualization of Transition Matrices
Figure 1 shows a graphical representation of the transition
matrices of (µ+, λ)-EA for the neutral fitness case. According
to further generated graphs, selection mechanism and pop-
ulation size only change concrete probabilities but not the
overall shape. The only important difference lies in applica-
tion or non-application of recombination which drastically
reduces the chances of small subpopulations to survive. The
state with equal numbers of individuals in both subpopula-
tions becomes even more unstable.

5. SIMULATION AND ANALYSIS
Our first tests have shown that without counteractions,

two subpopulations never survive for long if global environ-
mental (µ+, λ)-selection is applied. All further simulations
and experiments are thus targetted to answering the follow-
ing questions:

• What is the probability for a new subpopulation to
become extinct?

• How long do both attractors remain in focus of the
population?

With our model and the formulas derived in the last sec-
tions, we now have a number of tools available for generat-
ing numerical results needed to answer these two questions.
Markov simulations were carried out for smaller populations
and thus manageable transition matrix sizes. Additionally,
we used simple Monte Carlo simulations to approximate
cases with larger populations where Markov simulations get
difficult to handle (see Fig. 2). Furthermore, model results
were validated by comparison to the averaged output of a
real EA, started under similar conditions.

Figure 2: The two-attractor model is derived from
a real EA by simplification: Only mechanisms re-
garded as dominant are included. Defining exact
start conditions, it can be validated by comparing
model output to EA results.

Another very elegant way to directly compute extinction
times and probabilities for the black subpopulation is to an-
alyze the transition matrix of the markov process. In case of
mating restrictions no gray individuals need to be considered
and the transition matrix is simply given by the µ+1×µ+1
matrix pj(k). The markov process is a process with two ab-
sorbing boundaries, either the extinction of black individuals
k = 0 or the extinction of white individuals k = µ. Thus, it
suffices to analyse the properties of the fundamental matrix
in order to directly compute the mean extinction time and
extinction probability of the black subpopulation [12].

Under plus selection, gray individuals can not enter the
population Pt+1 provided that no gray individuals existed
in Pt. Thus, the µ + 1 × µ + 1 transition matrix of size
pl,0(k, 0) can be applied to precisely compute mean extinc-
tion times and probabilities of the black subpopulation, in
a similar manner as suggested for the aforementioned case
with mating restrictions.

In case of comma selection, gray individuals appear in the
parent population with positive probability, even if we start
from black and white individuals only. Thus the number
of states for the transition matrix increases from µ + 1 to
(µ+1)×(µ+2)/2. As the transition matrix has size (number
of states)2, doubling µ leads to a ≈ 24 = 16 times larger
matrix, resulting in high computational cost.

Real EA Experimental Setup
As real optimization problem examples, we consider sym-
metric and asymmetric two spheres problems of type f(x) =
min(

P
(xi − ai)

2,
P

(xi − bi)
2 − c), with a and b giving

sphere centers and c = 0 for the symmetric case. Here,
we utilize discrete (dominant) recombination as common in
evolution strategies, and mutation with small, constant mu-
tation strength. Two subpopulations of size k and µ−k are
initialized slightly inside their particular basin of attraction.
Note that at this stage, we provide the EA with attractor
information for each individual by initialization — this is
equivalent to an ideal initial clustering.

Extinction Probabilities and Times
Concerning extinction probabilities, Fig. 3 documents the
results of our Markov simulations. For the case of equal
fitness values, these grasp the behavior of a real EA well if
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Figure 3: Extinction probabilities computed by means of Markov chain simulations, (µ + 7µ)-EA, with (left,
scaling differs) and without (right) recombination on neutral fitness.

strategy k neutral reco pext niching pext

(16,112) 1 x 1.1 1.0 >105 0.5
(16,112) 1 1.7 0.96 1.0 0
(16+112) 1 x 1.2 1.0 >105 0.5
(16+112) 1 5.7 0 1.0 0
(16,112) 8 x 4.8 0.5 >105 0.5
(16,112) 8 1.0 0 1.0 0
(16+112) 8 x 5.5 0.5 >105 0.5
(16+112) 8 1.0 0 1.0 0

Table 1: Extinction times/probabilities pext com-
puted by Markov simulation. Reco: default recom-
bination, niching: niching with mutation only or
with recombination (equivalent in the model). For
boolean fitness pext of the better subpopulation is
recorded.

fitness values in the latter are very similar. Under our as-
sumptions the simulations revealed that selection pressure
or method (plus or comma) have little to no influence on the
extinction probability characteristics. Recombination drives
low and high probability lines towards the center, denoting
that a small subpopulation is displaced with increased prob-
ability by its larger counterpart. In particular, this applies
to groups of individuals resulting from detection of a new
attractor. In a real EA with comma selection, it holds even
for boolean fitness (one subpopulation is better).

Figure 4 illustrates the effects of recombination on the
extinction times. Compared to the case without recombina-
tion, extinction times shrink to less than half the amount of
the former. We infer that recombination provides for a clear
distinction of subpopulations. The smaller subpopulation is
afflicted with higher extinction probabilities as well as lower
extinction times. Table 1 gives some numerical examples for
Markov simulation results of borderline cases.

Both Subpopulations Become Extinct
It can be expected that under certain conditions, both origi-
nal (black and white) subpopulations may vanish and be re-
placed with gray individuals. However, Markov chain analy-
sis for small µ revealed that for λ ≥ 4µ this probability
is almost negligible. For neutral function values, µ even
and µ/2 black and µ/2 white start individuals, the recom-
bination operator would produce on average λ · (1/2)2 black
and white offspring each, but 2 · λ · (1/2)2 gray offspring.
Therefore, to keep both subpopulations the selection pres-
sure must hold λ/µ > 4. Otherwise, at least one subpopu-
lation would rapidly die out.

Observations Concerning Gray Individuals
Early EA experiments revealed that our models assumptions
about producing gray individuals and thus the expected dis-
ruptiveness of recombination may be too strong, especially
in case of discrete (dominant) object parameter recombi-
nation. As this reproduction operator works like uniform
crossover, the parent contributing an object parameter to
the new individual is randomly chosen for each search space
dimension. Producing an individual that inherits genetic
material only from one parent thus has probability 1/2n−1

if n is the number of object parameters differing in both par-
ents. For high dimensional search spaces with uneven local
optima distribution, the gray individual fitness assumption
seems realistic, whereas for very low dimensional problems,
many gray individuals are in truth black or white.

A more general reason against the low fitness assumption
of gray individuals is that recombination between subpopu-
lations may lead to new local optima. However, the proba-
bility for these events entirely depends on the nature of the
fitness function. We expect that local optima detection by
recombination is likely for regularly structured optimization
problems like e.g. the Rastrigin function. If local optima
are distributed in an asymmetric fashion, this will happen
far less often and thus our model is much more appropriate.

Another unregarded possibility to produce gray individ-
uals in a real EA is by mutation. In fact, it may happen
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Figure 4: Extinction times as derived from results of a (µ , 7µ)-EA on a problem with two symmetric spheres
in 10 dimensions, with (left) and without (right) recombination.

that by a huge lucky step in search space another attractor
is found. If by then the remaining population has converged
to one attractor, our model can be applied to this situation
by marking this new individual as black and setting k = 1.
Nevertheless, we expect that except for the first generations,
such an event happens very rarely if we additionally take into
account that the fitness value on the newly found attractor
already has to be good enough to be selected for the next
generation to reproduce.

6. REPRODUCTIVE NICHING
In contrast to other approaches that concentrate on se-

lection mechanisms [5], niching and thus preservation of
subpopulations may also be carried out by modifying re-
production. Considered we assume ideal knowledge about
individual–attractor assignment, we could separately gen-
erate the same number of offspring from white and black
subpopulations by combining only individuals located in the
same attractor. We thereby avoid producing gray individu-
als. This is related to the tagging-based mating restriction
method suggested in [14], but differs insofar as we explicitely
require the same amount of offspring for each subpopulation.
Assuming an even population size λ, for the transition prob-
abilities we get the equations:

pgen

l,r (k, i) =

�
I(l = λ/2) if (k 6= 0) ∧ r = 0
0 otherwise

(11)

For the case of equal fitness of individuals on both attractors
we get

psel
j,n(k, i, l, r) =

�
q

j

�
·
�

m−q

µ−j

��
m

µ

� , (12)

setting q = k + l, m = µ + λ in case of plus selection and
q = l, m = λ in case of comma selection.

Accordingly, for the case that individuals on the black
attractor have better fitness than individuals on the white
attractor, we get

psel
j,n(k, i, l, r) = I(j = min(µ, q)∧n = max(0, µ−m)) , (13)

using the same settings for m and q as in equation 12. Note,
that in case of comma selection no species can become ex-
tinct if λ < 2µ. Hence, no absorbing state can be reached
from any state with 0 < k < µ.

Figure 5 depicts how reproductive niching works for low
population sizes µ under comma selection, obtained by run-
ning real EAs with correct initial clustering up to repro-
duction cycle 1000. Beyond a certain minimal population
size that depends on selection pressure λ/µ, extinction times
rapidly grow, standing for long periods of coexistence.

A New Clustering Algorithm

Figure 6: Schema drawing of our clustering algo-
rithm, every individual connects to the nearest bet-
ter neighbor and connections beyond a threshold
length (here: 4 to 7) are interpreted as linking dif-
ferent clusters.

By now we have collected strong evidence in favor of a
niching enhanced (µ+, λ)-EA when compared with a tradi-
tional variant. But to enable niching on unknown multi-
modal problems, a clustering algorithm is needed that iden-
tifies niches during the optimization run. This idea is not
entirely new, as the work of Ursem [16] and Streichert [15]
documents. Having in mind the difficulties arising from the
niche identification methods of these two approaches — in-
creased use of evaluations in the former and difficult para-
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Figure 5: Extinction times with niching, real (µ , 2µ) (left) and (µ , 7µ)-EA (right), on 10 dimensional two
symmetric spheres problem. 1000 is optimal.

metrization in the latter one — we decided to design a new
clustering method that makes use of search space and fit-
ness information and does not necessitate much parameter
experimentation.

Our clustering method is layed out in high-level pseudocode
in Alg. 2. It rests upon the assumption that the best yet
found search points on different attractors are much further
away from each other than all individuals are from their
nearest better neighbor on average. Thus, it first creates a
minimum spanning tree out of the current population (see
Fig. 6). The longest edges are then cut, each time splitting a
connected subgraph into two. We identify these by means of
a heuristic rule that uses the new parameter φ. Throughout
the following experiments, φ is always 2, which seems to be a
feasible default value. Note that our algorithm neither uses
minimal linkage distances, nor a preset number of required
clusters.

Algorithm 2 Nearest-better Clustering

compute all individuals mutual distances in search space;
create an empty graph with num(individuals) nodes;
for all individuals do

find nearest individual that is better; create edge to it;
end for/* result is minimum spanning tree */
delete edges of length > φ ·mean(lengths of all edges);
find connected subgraphs;

2-Sphere Experiments
As a first test, we performed experiments with the clustering-
based EA on the aforementioned symmetrical and asymmet-
rical 2-sphere problem under the same initial conditions as
before (Table 2). Here, the clustering problem is rather
trivial and the obtained results are thus comparable to the
ones generated by Markov simulations. Interestingly, for the
asymmetrical case and comma-selection, single-individual
subpopulations on the better attractor always die out with
high empirical probability (pext > 0.9) if default recombi-
nation is applied. For the symmetrical case, niching evenly

strategy k mut reco r-mat niching nich-reco
(16,112) 1 3.8 1.1 2.8 1.4·104 0.6·104

(16+112) 1 4.1 1.1 2.6 >5·104 2.2·104

(16,112) 8 9.7 4.5 7.7 1.4·104 0.7·104

(16+112) 8 9.6 4.6 7.5 >5·104 1.9·104

(20,80) 1 4.0 1.1 3.0 >8·104 >8·104

(20+80) 1 3.8 1.1 3.0 >8·104 >8·104

(20,80) 10 12.5 4.9 10.0 >8·104 >9·104

(20+80) 10 11.0 5.2 9.1 >8·104 >8·104

(50+50) 1 4.8 1.6 3.7 >105 105

(50+50) 25 25.0 11.0 21.8 >105 105

Table 2: Extinction times on a symmetric 2-sphere
problem, mean values of 500 replicates, with a max-
imum of 105 generations. Mut: mutation only, reco:
default recombination, r-mat: restricted mating,
niching: mutation only with niching, nich-reco: re-
combination with niching.

divides the chances for either subpopulation to go extinct,
regardless of its initial size. As reproductive niching en-
forces creation of the same number of offspring individuals
for every attractor, small subpopulations are granted very
high reproduction rates, thereby intensifying exploitation of
their basins of attraction. During one optimization run,
these proportions can shift several times (swing effect). It is
our hope that this mechanism also enables optimizing multi-
modal problems with similarly as opposed to equally valued
attractors.

N-Peaks Experiments
In order to verify reproductive niching as well as our cluster-
ing algorithm on a more demanding task, we ran the same
EA on randomly generated 5-peaks problems of quadratic
shape in 5 dimensions. All peaks are of equal height so that
this setting is related to the neutral fitness case. Note that
we are not interested in the performance of the EA in terms
of speed, but in its ability to keep track of as many optima
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as possible for a long time. Fig. 7 shows that with a larger
population, reproductive niching with recombination is par-
ticularly successful by keeping 4 peaks covered on average.
Around 1

3
of its runs ended with 3,4, and 5 peaks, respec-

tively. It seems that increasing the population size to at
least ≈ 10 individuals per peak is necessary to support the
clustering. At the same time, chances raise to put at least
one indivual onto every peak during randomized initializa-
tion.
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Figure 7: Peak coverage of (100,500)-ES with clus-
tering on 5 dimensional random 5-peaks problem,
under different reproduction schemes (see Table 2).
Note: lines only added to enhance visibility, values
sampled by 500 independent runs of 10, 100, and
1000 generations length.

7. CONCLUSION
A two attractor model has been developed and validated

that allows for the analysis of subpopulation coexistence in
a (µ +, λ)-EA on bimodal fitness functions with and with-
out recombination. By means of this simple model we can
explain and quantify the frequently observed effect that the
use of recombination in (µ+, λ)-EA accelerates the extinction
of subpopulations, and the related observation that new in-
dividuals that are placed on a distant attractor might easily
get lost. The obtained results show, that this also happens
when fitness values are equal on both local optima, which
is some kind of extreme assumption with regard to the dif-
ficulty of maintaining coexisting subpopulations.

Omitting the recombination operator or applying mating
restrictions (which is similar in the model) increases the sta-
bility of subpopulations. Furthermore, it gets far less likely
that individuals with better fitness but located on a distant
attractor, die out in comma selection. But even for this sce-
nario coexistence of populations is unlikely for a longer time
even under neutral fitness. Further niching techniques are
needed in order to allow populations with similar fitness to
coexist. Here, the proposed reproductive niching proved to
be very effective.

Future work will be needed, to extend the model for more
complex landscapes with multiple peaks. On such land-

scapes diversity raising effects of recombination, e.g. the
detection of new suboptima by combining building blocks,
may compensate for diversity loss due to the extinction of
subpopulations.
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[13] J. L. Shapiro and A. Prügel-Bennett. Genetic algorithm
dynamics in two-well potentials with basins and barrier. In
Proceedings of Foundations of Genetic Algorithms – 4, pages
101–116. Morgan Kaufmann, 1997.

[14] W. Spears. Simple subpopulation schemes. In A. V. Sebald and
L. J. Fogel, editors, Proc. Third Annual Conf. Evolutionary
Programming (EP’94), pages 296–307, Singapore, 1994. World
Scientific.

[15] F. Streichert, G. Stein, H. Ulmer, and A. Zell. A clustering
based niching method for evolutionary algorithms. In
E. Cantú-Paz, editor, Genetic and Evolutionary Computation
– GECCO-2003, pages 644–645, Berlin, 2003. Springer-Verlag.

[16] R. K. Ursem. Multinational evolutionary algorithms. In P. J.
Angeline, editor, Proceedings of the Congress of Evolutionary
Computation (CEC-99), volume 3, pages 1633–1640,
Piscataway, NJ, 1999. IEEE Press.

872


